人工智能自然语言处理领域的应用(人工智能自然语言处理领域的应用案例)
人工智能智慧生活内容
多语言翻译。
自然语言处理的一个主要应用方面就是外文翻译。生活中遇到外文文章,大家想到的第一件就是寻找翻译网页或者APP,然而每次机器翻译出来的结果,基本上都是不符合语言逻辑的,需要我们再次对句子进项二次加工排列组合。至于专业领域的翻译,如法律、医疗领域,机器翻译根本就是不可行的。
面对这一困境,自然语言处理正在努力打通翻译的壁垒,只要提供海量的数据,机器就能自己学习任何语言。机器从0开始进入一个领域(零成本进入)大概2周时间。所以,进入哪个领域都能高度垂直的做下去。比如,法律类专业文章翻译,优质法律文章的总量是有限的,让机器学习一遍这些文章,就可以保证翻译95%的流畅度,而且能做到实时同步。
2、虚拟个人助理。
虚拟个人助理是指使用者通过声控、文字输入的方式,来完成一些日常生活的小事。大部分的虚拟个人助理都可以做到搜集简单的生活信息,并在观看有关评论的同时,帮你优化信息,智能决策。
同时部分虚拟个人助理还可以直接播放音乐的智能音响或者收取电子邮件,这些都是虚拟个人助理的变化形式之一。虚拟个人助理应用在我们生活中的方方面面,音响、车载、智能家居、智能车载,智能客服多个方面。一般来说,听到语音指令就可以完成服务的,基本上都是虚拟个人助理。
3、智能病例处理
自然语言处理还可以将积压的病例自动批量转化为结构化数据库,机器学习和自然语言处理技术能自动抓取病历中的临床变量,生成标准化的数据库。随后变量抽提、思路生成到论文图表导出的全过程辅助智能算法能挖掘变量相关性,激发论文思路,同时提供针对临床科研的专业统计分析支持。
其水平相当于受过8年临床医学教育的医学研究生,这样下来同样同读一篇50页的病历,抓取和理解其中的所有临床信息速度比医生平均快2700倍,大大地提高了医院的办公效率,求医难这个问题将得到很多的缓解。
【第二方面:语音识别】
语音识别是一门交叉学科。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情,如今人工智能将这一理想变为现实,并带它走入了我们日常的生活。
1、智能医院。
依靠人工智能技术和大数据,医院可以实现智能语音交互的知识问答和病历查询,语音录入能取代打字,让您通过说话的方式,就可轻松与电脑、平板电脑、移动查房设备进行录入。每一个人说的话说话都会被转录成文字并显示在您的HIS系统、PACS系统、CIS系统等希望输入文字的位置。此外还可以对健康风险进行预测和对患者分群进行分析。
2、口语评测。
在语音识别方面还有一个比较有趣的应用——语音评测服务,语音评测服务是利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用。在语音测评服务中,人机交互式教学,能实现一对一口语辅导,就好像是请了一个外教在家,从此解决了哑巴英语的问题。
【第三个方面:计算机视觉】
计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。通过计算机视觉,电脑将处理更适合人眼观察或传送给仪器检测的图像。计算机视觉的主要任务是通过对采集的图片或者视频进行处理以获得相应场景的三维信息。
1、智能安防。
随着各级政府大力推进“平安城市”建设的过程中,监控点位越来越多,视频和卡口产生了海量的数据。尤其是高清监控的普及,整个安防监控领域的数据量都在爆炸式增长,依靠人工来分析和处理这些信息变得越来越困难,利用以计算机视觉为核心的安防技术领域具有海量的数据源以及丰富的数据层次,同时安防业务的本质诉求与AI的技术逻辑高度一致,从可以从事前的预防应用到事后的追查。
2、人脸识别打拐。
当前,全国拐卖儿童犯罪活动较为猖獗,受害人及受害家庭数以万计。据民政部估计,目前,全国流浪乞讨儿童数量在100万-150万左右。在河南、云南以及两广沿海等地乡村地区,买卖儿童几近市场化,形成了一个完整的地下黑色利益链。可以寻回被拐卖儿童这件事迫在眉睫,刻不容缓。目前计算机视觉所应用的“人像识别、人脸对比”最快可以让被拐儿童在7小时内被寻回,这是计算机视觉在安全领域的巨大应用,今后也将越来越多地应用在打击犯罪等方面。
【第四个方面:专家系统】
专家系统是人工智能中最重要的也是最活跃的一个应用领域,它是指内部含有大量的某个领域专家水平的知识与经验,利用人类专家的知识和解决问题的方法来处理该领域问题的智能计算机程序系统。通常是根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,去解决那些需要人类专家处理的复杂问题。
1、无人汽车。
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标。从20世纪70年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,在可行性和实用化方面都取得了突破性的进展。
中国从20世纪80年代开始进行无人驾驶汽车的研究,国防科技大学在1992年成功研制出中国第一辆真正意义上的无人驾驶汽车。2005年,首辆城市无人驾驶汽车在上海交通大学研制成功。世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。
2、天气预测
随着手机的普及,现在越来越多的人已经习惯观看手机中的天气预测,而在天气预测中,专家系统的地位也是决定性的。专家系统可以首先通过手机的GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。
用户就可以随时随地地查询自己所在地的天气走势。天气预测中再无“局部地区有雨”的字眼,取而代之的是“您所在街道25分钟后小雨,50分钟后雨停”。给您配上一位专属的天气预报员,让您收到的天气预报能精准到分钟和所在街道。
3、城市系统
城市系统是将交通、能源、供水等基础设施全部数据化,将散落在城市各个角落的数据进行汇聚,再通过超强地分析、超大规模地计算,实现对整个城市的全局实时分析,让城市智能地运行起来。城市系统率先解决的问题就是堵车。今年杭州的城市大脑,通过对地图数据、摄像头数据进行智能分析,从而智能地调节红绿灯,成功将车辆通行速度最高提升了11%,大大改善了出行体验。
【第五个方面:各领域交叉使用】
其实人工智能的四大方面应用其实或多或少都涉及到了其他领域,然而交叉应用最突出的方面还是智能机器人。机器人是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。
1、物流机器人
物流机器人是结合机器人产品和人工智能技术去实现高度柔性和智能的物流自动化的技术变革的引领者。在消费升级下的市场压力,海量SKU的库存管理、难以控制的人力成本,都已经成为电商、零售等行业的共同困扰。而物流机器人管理成本低,包裹完整性强,可以满足各种分拣效率和准确率的要求,投资回报周期短。它的出现可有效提升生产柔性,助力企业实现智能化转型,也将越来越多地应用在日常生活中。
2、萌宠机器人
孩子一直是家长的心肝肉,而如何让孩子赢在起跑线也是各路家长无比关心的问题,这时候早教就显得尤为重要了。早教其实就是让孩子有效的玩耍,让孩子在玩耍的过程中学到很多知识,开发孩子的脑力,动手能力,反应能力,审美能力,培养兴趣及习惯。
市面上的早教机构价格昂贵,师资力量不足,同时还可能存在一定的安全隐患,这时候萌宠机器人的存在就很大的缓解了这一问题。语音功能让它就像孩子的小伙伴一样和孩子交流,记忆功能还可以记住宝宝的使用习惯,很快找到宝宝想听的内容。同时提供快乐儿歌、国学经典、启蒙英语等早期教育内容,且云端内容可以持续更新
人工智能在自然语言处理方面主要应用的领域包括
1、新闻分类
自主爬取互联网上各种文章,对其进行自动分类,如体育/财经/女性/等各种自定义分类。
2、在线客服
自动回复用户提出的与产品或者服务相关的问题,以降低企业客服成本、提升用户体验。如阿里小米、京东JIMI客服机器人。
3、娱乐
对不同用户进行不同话题闲聊,从而起到娱乐、陪伴作用。如微软小冰、微信小微。
ai人工智能用途范围
人工智能()的用途范围非常广泛。它可以应用于自动驾驶汽车、智能助理、语音识别、机器翻译、医疗诊断、金融风险分析、智能家居、工业自动化等领域。
AI还可以用于数据分析、预测模型、图像识别、自然语言处理、智能推荐系统等任务。通过机器学习和深度学习技术,AI能够处理大量数据并从中学习,提供更准确、高效的解决方案,为各行各业带来更多创新和便利。
人工智能的应用领域有哪些
1.自动驾驶:自动驾驶是人工智能技术的一个重要应用,它可以帮助汽车在道路上自动行驶,减少交通事故的发生。
2.语音识别:语音识别是一种人工智能技术,它可以帮助计算机识别人类语言,并将其转换为机器可以理解的语言。
3.机器视觉:机器视觉是一种人工智能技术,它可以帮助计算机识别图像,并从图像中提取有用的信息。
4.自然语言处理:自然语言处理是一种人工智能技术,它可以帮助计算机理解人类语言,并从中提取有用的信息。
5.智能客服:智能客服是一种人工智能技术,它可以帮助企业提供更好的客户服务,提高客户满意度。
6.智能家居:智能家居是一种人工智能技术,它可以帮助家庭自动控制家电,提高家庭的安全性和便利性。
7.智能搜索:智能搜索是一种人工智能技术,它可以帮助用户更快更准确地搜索到所需的信息。
8.智能推荐:智能推荐是一种人工智能技术,它可以帮助用户更快更准确地找到自己喜欢的产品和服务。
人工智能自然语言处理,有哪些应用场景
自然语言处理本身细分的领域比较多,类似NER,情感分析,Semanticparsing,dependencyparsing,知识图谱,对话,翻译,阅读理解,摘要,文本自动生成等等。这里面有涉及到传统的机器学习方法和深度学习,以及图的相关知识,内容非常复杂。Google翻译用的大致是深度学习搭建起来的seq2seq模型,Google搜索逐渐集成了知识图谱和各种parsing的机制,逐渐向问答式的搜索过渡,知识图谱是比较火热的一个点,主要用于不同场景和企业的自己的知识图谱的建立,从而有助于具体业务。各个大厂现在几乎都有自己的NLP的处理框架和系统,主要就是集成了NER,parsing等的各种插件,在基础插件的地基上建立不同业务使用的api。